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Approaching disorder-tolerant semiconducting
polymers
Xinwen Yan1,2,3,8, Miao Xiong1,2,8, Xin-Yu Deng1, Kai-Kai Liu1, Jia-Tong Li1, Xue-Qing Wang1, Song Zhang 4,

Nathaniel Prine4, Zhuoqiong Zhang5, Wanying Huang6, Yishan Wang6, Jie-Yu Wang2, Xiaodan Gu 4,

Shu Kong So5, Jia Zhu 6,7 & Ting Lei 1✉

Doping has been widely used to control the charge carrier concentration in organic semi-

conductors. However, in conjugated polymers, n-doping is often limited by the tradeoff

between doping efficiency and charge carrier mobilities, since dopants often randomly dis-

tribute within polymers, leading to significant structural and energetic disorder. Here, we

screen a large number of polymer building block combinations and explore the possibility of

designing n-type conjugated polymers with good tolerance to dopant-induced disorder. We

show that a carefully designed conjugated polymer with a single dominant planar backbone

conformation, high torsional barrier at each dihedral angle, and zigzag backbone curvature is

highly dopable and can tolerate dopant-induced disorder. With these features, the designed

diketopyrrolopyrrole (DPP)-based polymer can be efficiently n-doped and exhibit high n-type

electrical conductivities over 120 S cm−1, much higher than the reference polymers with

similar chemical structures. This work provides a polymer design concept for highly dopable

and highly conductive polymeric semiconductors.
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Polymeric semiconductors have been intensively studied for
next-generation flexible or stretchable optoelectronic devi-
ces because of their unique mechanical properties and good

solution processability1,2. To tune the charge-carrier concentration,
Fermi level, and electrical conductivity of conjugated polymers,
molecular doping is widely used3–7. However, the introduced
dopants tend to randomly distribute within polymer film and bring
large structural and energetic disorder8. P-type dopants can be small-
size Lewis acids (e.g., ferric chloride), small molecules (e.g., 2,3,5,6-
tetrafluoro-7,7,8,8-tetracyanoquinodimethane), and polymers (e.g.,
poly(4-styrene sulfonate) (PSS)). These p-dopants are strong oxidants
or acids, and can be incorporated into the polymer matrix without
significantly disrupting the ordered molecular packings and thus
leading to high p-type electrical conductivities9. High charge-carrier
concentration over 1021 cm−3 and high electrical conductivities over
1000 S cm−1 have been achieved in p-doped polymers, such as
poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene)7 and
poly(3,4-ethylenedioxythiophene):PSS)10. In contrast, the commonly
used n-type dopants usually have weak reducing ability and relatively
large size to achieve good air stability11, resulting in a significant
increase of disorder after doping. Therefore, the charge-transport
properties of n-type polymers are strongly hindered by the unde-
sirable doping-induced disorder. Only a few n-doped conjugated
polymers are reported to achieve conductivities approaching or over
10 S cm−1 12–17.

The low electrical conductivities of n-doped conjugated poly-
mers are mainly restricted by low doping efficiency and dopant-
induced structural and energetic disorder. Many efforts have been
devoted to improving the n-doping efficiency of conjugated
polymers through the introduction of electron-deficient building
blocks in the past decades18. However, the synthesis of strong
electron-deficient building blocks is challenging17, as organic
molecules with the lowest unoccupied molecular orbital (LUMO)
energy levels lower than −4.4 eV might become unstable19.
Furthermore, the n-doping efficiency is also limited by the solid-
state miscibility between polymer and n-dopants, as efficient
charge transfer between polymer and dopant requires close
contact20,21. To enhance the solid-state miscibility, several poly-
mer design strategies have been developed. For example, polar
ethylene glycol side chains were employed to replace conventional
alkyl side chains to improve the n-doping efficiency22. Twisted
and “kinked” donor moieties were used to decrease the crystal-
linity of the conjugated polymers, constructing percolation space
for dopants to improve doping efficiency23,24. However, these
strategies always result in significant structural and energetic
disorder, bringing about declined charge-carrier mobilities and
poor electrical conductivities22–24.

Here we explore the design of n-type conjugated polymers
with high tolerance to dopant-induced disorder. With a
computer-aided molecular design approach, we screened
currently available polymer building blocks and their possible
combinations. We found that the pyrazine (Pz) and 3,4-
difluorothiophene (2FT) combination exhibited the highest
torsional barrier, best planarity, and single dominant con-
formation, providing a highly rigid polymer backbone (Fig. 1).
Therefore, we synthesized the polymer P(PzDPP-2FT)
(Fig. 1b) with a zigzag backbone and relatively large Urbach
energy, which are usually thought to result in low charge-
carrier mobilities25,26. However, P(PzDPP-2FT) exhibits high
electron mobility due to its narrow conformation distribution,
low energetic disorder, and strong interchain interactions. The
zigzag backbone provides the polymer with a dopant-binding
cavity compared with polymers with linear backbones and
enhances doping efficiency. High mobility and enhanced
doping efficiency synergistically contribute to a high n-type
electrical conductivity over 120 S cm−1.

Results
Computer-aided polymer design. Previous studies have sug-
gested that to achieve efficient charge transport in conjugated
polymers, intrachain charge transport and interchain short-range
contacts are critical27,28. As the intrachain charge-transport
behavior is closely associated with the conformational distribu-
tion of the polymer backbone, carefully tuning the torsion-angle
distribution between the polymer building blocks from the level
of molecular design is crucial for maintaining low conformation
disorder29. Therefore, we propose that there are three critical
rules of designing conjugated polymers to enhance the tolerance
to dopant-induced disorder: (1) high coplanarity to obtain good
intrachain and interchain charge transport, which can be quan-
tified through a planarity index 〈cos2φ〉30; (2) single preferential
planar backbone conformation; and (3) high and steep torsion
barriers that are essential to restrain the polymer backbone to
maintain a coplanar conformation and enhance the tolerance to
dopant-induced disorders. Although Rule (1) (〈cos2φ〉 value) has
considered all torsional conformations and their relative con-
tribution to the overall structural disorder, it is still not enough to
screen the desired polymers with minimal dihedral angle dis-
tributions. Therefore, we introduced Rules (2) and (3) (see Sup-
plementary Information for more details).

Based on these concepts, we employed density functional theory
(DFT) calculations to screen currently available high-performance
polymer building blocks. We hope to find a combination with the
best planarity, highest torsional barrier, and single dominant
conformation (Fig. 1a and more details in Supplementary Informa-
tion Section 2). After extracting donor and acceptor segments from
various representative donor–acceptor (D-A) polymers, relaxed
potential energy scans (PESs) were performed at the dihedral angles
of adjacent units. After comparing the performance of several
different computational methods, ωB97X-D/6-311G(d, p) was
selected due to its reasonable accuracy and better efficiency in
predicting the torsional barrier heights of conjugated polymers
(Supplementary Fig. 4). We found that Pz and 2FT combination
shows the highest 〈cos2φ〉 value of 0.9329, i.e., the highest
planarization, which could be attributed to its highest torsional
barrier as well as its lowest relative energy at 0°. Electronegative atom
N on the ring increases the rotational barriers by enhancing the
backbone conjugation31. The fluorine has little steric hindrance and
provides attractive non-covalent interactions, which also plays a
significant role in promoting the planarization of Pz-2FT (see
detailed discussions in the Supplementary Information Section 2).
Thus, based on these building blocks, P(PzDPP-2FT) was designed
(Fig. 1b), in which the torsion angles are small (φ1= φ2= 0.002°).
For comparison, reference polymers, P(PzDPP-4F2T) and P(PzDPP-
T), with similar chemical structures were also synthesized (Fig. 1b).
DFT calculations reveal that the three polymers exhibit coplanar
backbones from the side view under the optimized conformations
(Supplementary Fig. 8). PES results demonstrate that Pz-DPP tends
to form planar connections for all the polymers (φ1, φ3, and φ6) due
to the non-covalent O ∙ ∙ ∙H bonding (Fig. 1c). However, the small
torsional barrier between the two thiophene units (φ5) in P(PzDPP-
4F2T) makes the polymer readily deviate from planarity. Even
though the dihedral angle of the Pz-T (φ7) in P(PzDPP-T) exhibits a
relatively high torsional barrier, the low torsional barriers at both 0°
and 180° make P(PzDPP-T) have more than one preponderant
conformation. Interestingly, the strong F ∙ ∙ ∙H interaction at Pz-2FT
brings about a steeper and higher torsional barrier, and only one
preponderant conformation at 0°. These two crucial features promote
P(PzDPP-2FT) to form narrower torsion-angle distributions and
thus low conformation disorder. Compared with the pseudo-linear
backbone of both P(PzDPP-4F2T) and P(PzDPP-T), P(PzDPP-2FT)
has a zigzag backbone curvature (Fig. 1d and Supplementary Fig. 8).
We will show that this structure feature allows P(PzDPP-2FT) to
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form unique binding sites with n-dopants and further reducing the
energetic disorder after doping.

Polymer properties. According to the cyclic voltammetry mea-
surement, the estimated LUMO energy levels of P(PzDPP-2FT)
and P(PzDPP-4F2T) are −3.90 eV and −3.82 eV, respectively
(Supplementary Fig. 12). As P(PzDPP-2FT) and P(PzDPP-4F2T)
have very similar chemical structures and close LUMO energy
levels, we will focus on the comparison of their properties and
device performance. Previous study has shown that the absorp-
tion profiles of polymers can reflect the rigidity and coplanarity of

polymer backbones32. Conjugated polymers with larger torsional
angles will become more planar in solid state due to interchain
π–π stacking, leading to a red-shift in the solid-state absorption
spectra. The thin-film absorption spectra of P(PzDPP-2FT) do
not exhibit a noticeable shift compared to its solution one
(Fig. 2a), suggesting that P(PzDPP-2FT) has a rigid and coplanar
backbone with similar molecular conformations in both solution
and solid state. In contrast, the film absorption spectrum of
P(PzDPP-4F2T) exhibited an obvious red-shift compared to
solution one (Fig. 2b), suggesting that P(PzDPP-4F2T) has a
relatively flexible backbone and it may adopt more planar back-
bone conformation in solid state. Moreover, it has been proved
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that conjugated polymers with more planar and rigid backbone
usually exhibit smaller Stokes shift and smaller full width at half
maxima (FWHM) of their absorption and emission peaks33,34.
Figure 2c shows that the Stokes shift of P(PzDPP-2FT) is 17 nm,
which is much smaller than that of P(PzDPP-4F2T) (35 nm). The
FWHM of the 0-0 absorption and emission peaks of P(PzDPP-
2FT) are 41.1 and 39.5 nm, respectively, which are also smaller
than that of P(PzDPP-4F2T) (43.8 and 41.6 nm for the absorption
and emission peaks, respectively) (Supplementary Fig. 15). These
results indicate that P(PzDPP-2FT) has a more planar and more
shape-persistent backbone than P(PzDPP-4F2T).

We observed that the P(PzDPP-2FT) solution can form a gel
when aged at room temperature, whereas the P(PzDPP-4F2T)
solution remains fluid after aging even though both polymers
have similar solubility (Fig. 2d and Supplementary Fig. 28). As gel
formation usually requires the presence of a cross-linked polymer
chain network that percolates the system and confines the
solvent35, we assume that P(PzDPP-2FT) may have strong
interchain short contacts. To further prove this, viscosity was
employed to evaluate properties of both polymers in solutions. As
was expected, P(PzDPP-2FT) always exhibit higher viscosity and
larger Martin constant KM (reflect the polymer–polymer
interaction36) than P(PzDPP-4F2T). The intrinsic viscosity [η]
of P(PzDPP-2FT) is over two times higher than that of P(PzDPP-
4F2T), indicating the existence of larger macromolecules or
aggregates37. These results confirm that P(PzDPP-2FT) has short
interchain contacts or crosslinking points in solution to form
such strong interactions, which will be further discussed and
supported by the photothermal deflection spectroscopy (PDS)
measurement.

Charge-transport properties and thin-film characterization.
Various mass fractions of 4-(1,3-dimethyl-2,3-dihydro-1H-

benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI) were
mixed with P(PzDPP-2FT) and P(PzDPP-4F2T) to optimize their
electrical conductivities. P(PzDPP-2FT) has a maximum con-
ductivity of 43.3 S cm−1, which is almost 20 times higher than
that of P(PzDPP-4F2T) (Fig. 3a). To eliminate the influence of
different dopants and doping methods, the two polymers were
also doped with tetrakis(dimethylamino)ethylene (TDAE) and
bis(cyclopentadienyl)cobalt (CoCp2). In both cases, P(PzDPP-
2FT) still showed higher n-type electrical conductivities than
P(PzDPP-4F2T) (Fig. 3b, c). Notably, after being doped with
CoCp2, P(PzDPP-2FT) exhibits the highest n-type electrical
conductivity of 129 S cm−1. As both TDAE and CoCp2 are small
and highly diffusible dopants (Supplementary Fig. 23), the con-
ductivity enhancement is probably due to their better perme-
ability and miscibility with the polymers, which can be supported
by the uniform microstructures of the polymer films at higher
doping concentrations (Supplementary Fig. 24). Besides, the
temperature-dependent electrical conductivity of the doped
P(PzDPP-2FT) shows weaker temperature dependence compared
with that of P(PzDPP-4F2T) (Supplementary Fig. 17), suggesting
that P(PzDPP-2FT) has lower charge-transport barriers after
n-doping.

The doping efficiencies of the films were studied by absorption
spectroscopy, ultraviolet photoelectron spectroscopy, and X-ray
photoelectron spectroscopy (XPS). At each dopant/polymer ratio,
P(PzDPP-2FT) showed stronger (bi)polaron absorptions than
P(PzDPP-4F2T) (Fig. 3d). The larger shifts of the onset of the
secondary electron cutoff for doped P(PzDPP-2FT) also imply
that the Fermi level of P(PzDPP-2FT) shifts higher than that of
P(PzDPP-4F2T) (Fig. 3e). The doping efficiency could also be
evaluated by the newly formed signal of N-DMBI+ at 402 eV with
XPS. For each dopant/polymer ratio, the relative intensity of the
cationic N-DMBI+ to other N (1 s) signals in P(PzDPP-2FT) film
is larger than that of P(PzDPP-4F2T) (Supplementary Fig. 18).
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The electron paramagnetic resonance (EPR) (Fig. 3f) and
alternating current (AC) magnetic field Hall (Supplementary
Fig. 19) measurements also showed that the N-DMBI-doped
P(PzDPP-2FT) exhibited higher charge-carrier concentrations
than P(PzDPP-4F2T). These results indicate that P(PzDPP-2FT)
exhibited higher doping levels than P(PzDPP-4F2T) in film.

Doping efficiency enhancement is usually attributed to the low-
lying LUMO energy levels of the polymer or the enhanced
miscibility between polymer and n-dopant. However, P(PzDPP-
2FT) shows almost the same LUMO energy level as P(PzDPP-
4F2T), which is relatively high among other n-type polymers
reported in the literature (Supplementary Fig. 12 and Supple-
mentary Table 4). Therefore, the slightly lower LUMO level of
P(PzDPP-2FT) cannot explain its high doping levels. The
microstructures of both the pristine and the N-DMBI-doped
P(PzDPP-2FT) and P(PzDPP-4F2T) films were characterized by
grazing incidence wide-angle X-ray scattering (GIWAXS). The
two-dimensional (2D) GIWAXS patterns of the pristine polymer
films are displayed in Supplementary Fig. 20. P(PzDPP-4F2T)
exhibits stronger (h00) diffraction peaks than P(PzDPP-2FT)
along the qz axis, indicating that P(PzDPP-4F2T) has a highly
ordered polymer packing, whereas P(PzDPP-2FT) has lower
crystallinity. P(PzDPP-2FT) mainly exhibits a face-on orienta-
tion, whereas P(PzDPP-4F2T) exhibits mixed face-on and edge-
on orientations. The π–π stacking distances were estimated to be
3.48 Å and 3.37 Å for P(PzDPP-2FT) and P(PzDPP-4F2T),
respectively. After N-DMBI doping, the lamellar packing and
π–π stacking distances of P(PzDPP-4F2T) remain almost
unchanged, whereas a slight increase of both the lamellar packing
and π–π stacking distances was observed for P(PzDPP-2FT)
(Supplementary Fig. 21). The paracrystallinity (g) change of both
polymers is shown in Supplementary Fig. 2227. Usually, after
heavily doping, polymer films showed increased paracrystallinity
due to dopant-induced structural disorder. Interestingly, the

paracrystallinity of P(PzDPP-2FT) does not change much even
for dopant/polymer ratios of up to 60%, suggesting its tolerance
to dopant-induced structural disorder. Atomic force microscope
(AFM) combined with infrared-spectroscopy can be used to
probe the dopant miscibility in polymer films38. When doped
with 30% N-DMBI, the P(PzDPP-2FT) film exhibited a domain
size of around 50 nm, much smaller than that of the doped
P(PzDPP-4F2T) film (90–110 nm) (Supplementary Fig. 27).
Moreover, the 30% N-DMBI doped P(PzDPP-4F2T) film has
large doped polymer domains separated by a large amount of
unreacted dopant (Supplementary Fig. 27b). In contrast, the
doped P(PzDPP-2FT) film has smaller polymer domains and a
tiny amount of unreacted dopant (Supplementary Fig. 27a).
Therefore, the enhanced doping efficiency of P(PzDPP-2FT) is
attributed to its good miscibility with dopants.

Disorder-tolerant features. The pristine P(PzDPP-2FT) exhib-
ited comparable electron mobilities (1.30 ± 0.14 cm2 V−1 s−1) to
that of P(PzDPP-4F2T) (1.28 ± 0.25 cm2 V−1 s−1) (Fig. 4a). The
gate-voltage-dependent mobilities of P(PzDPP-2FT) and
P(PzDPP-4F2T) were extracted from their transfer characteristics
(Fig. 4b). For P(PzDPP-2FT), the mobility is nearly independent
of the gate voltage (VG) when VG > 50 V, whereas the mobility of
P(PzDPP-4F2T) increases as VG increases. The temperature-
dependent drain current ID vs. VG in the saturation regime was
tested (Supplementary Fig. 35). For P(PzDPP-2FT), the exponent
γ, which reflects the temperature dependence, takes a nearly
temperature-independent value of about 3.3 (Supplementary
Fig. 36). In contrast, the exponent γ for P(PzDPP-4F2T) increases
when decreasing temperature, where γ= T0/T+ 2. This can be
explained by the carrier hopping within an exponential density of
states (DOSs)26,39. The temperature-dependent mobility mea-
surement shows that P(PzDPP-2FT) has lower activation energy

Fig. 3 N-doped electrical conductivities and doping efficiency comparison. a Electrical conductivities at different N-DMBI/polymer ratios. b Electrical
conductivities after different exposure times in TDAE vapor. c Electrical conductivities at different CoCp2/polymer ratios. The error bars are determined
according to 2% measurement errors. d Absorption spectra of the pristine and N-DMBI-doped P(PzDPP-2FT) and P(PzDPP-4F2T) films. e UPS binding
energy of the pristine and 15% N-DMBI-doped films. f EPR signals of the pristine and N-DMBI-doped films at different dopant/polymer ratios.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26043-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5723 | https://doi.org/10.1038/s41467-021-26043-y | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(Ea) than P(PzDPP-4F2T) (Supplementary Fig. 37). All these
results suggest that the pristine P(PzDPP-2FT) has lower ener-
getic disorder than P(PzDPP-4F2T)26. Previous studies demon-
strated that disorder in semiconductors would result in the
formation of the tail states of their DOSs, broadening of the
absorption onset, and creating an exponential sub-bandgap
absorption tail called the Urbach tail. The Urbach energy (Eu)
is often used to evaluate the energetic disorder of a conjugated
polymer film26,40. According to PDS characterization, P(PzDPP-
2FT) exhibits a larger Urbach energy (48.8 meV) than P(PzDPP-
4F2T) (36.6 meV) (Fig. 4d). This seems to conflict with our device
results that P(PzDPP-2FT) has lower energetic disorder. In fact,
the disorder in conjugated polymer film could come from the
torsional disorder along the polymer backbone or different
molecular packings. A conjugated polymer film usually contains
crystalline, semi-crystalline, and amorphous regions. Compared
with the crystalline region, the DOS broadening in the semi-
crystalline and the amorphous regions is more significant (further
discussed in the theoretical modeling part). The GIWAXS results
suggest that P(PzDPP-2FT) is less crystalline with more dis-
ordered polymer packing. As P(PzDPP-2FT) has a rigid and
planar backbone, its larger Urbach energy does not come from
the torsional disorder along the polymer backbone. Therefore, the
larger Urbach energy of P(PzDPP-2FT) can be attributed to its
low crystallinity and less ordered molecular packing. However,
charge-transport properties in polymer film are mostly influenced
by the DOS along the charge-transport pathways. We also
compared the charge-carrier mobilities and Eu data of different
types of polymers reported in the literature. It turns out that there
is no clear relationship between charge-carrier mobility and Eu
(Fig. 4e). Interestingly, for the polymers with high mobilities over
1 cm2 V−1 s−1, P(PzDPP-2FT) has the largest Eu. This result can
be explained by a previous assumption that fast intrachain charge

transport and a few interchain short-range contacts are sufficient
to allow high charge-carrier mobilities in conjugated polymers27.
Recent studies have indicated that a stronger sub-bandgap
absorption coefficient area in PDS suggests the existence of
stronger interchain short contacts within materials’ amorphous
domains41. The larger sub-bandgap area of P(PzDPP-2FT) in PDS
measurements also suggests it has stronger interchain short-range
interactions (Supplementary Fig. 39), consistent with the gel for-
mation experiment and the higher viscosity of P(PzDPP-2FT)
solution. In addition, the DFT calculations, absorption profiles,
and Stokes shifts all support that P(PzDPP-2FT) has a rigid and
single preferential planar conformation, which guarantees its fast
intrachain charge transport. Therefore, the high electron mobility
of P(PzDPP-2FT) can be attributed to its efficient intrachain
charge transport and good interchain short-range interactions.

The activation energies of the polymer films at different doping
concentrations were extracted (Supplementary Fig. 40). P(PzDPP-
2FT) exhibited constantly lower activation energies than P(PzDPP-
4F2T) (Fig. 4c). The activation energies of both P(PzDPP-2FT) and
P(PzDPP-4F2T) first decrease and then increase as the dopant
concentration increasing. Molecular doping of a disorder organic
semiconductor has two counteracting effects. On the one hand, it
increases the charge-carrier concentration and fills the traps, leading
to a reduced activation energy for charge transport42. On the other
hand, the insertion of the ionized dopants causes structural and
energetic disorder because of film microstructure damage and the
randomly distributed Coulombic interactions between the dopant
ions and the charge carriers. These effects result in increased
activation energy, especially at high dopant concentrations43. There-
fore, the decrease of the activation energy might be due to the trap-
filling mechanism and the increase of the activation energy could be
attributed to the excessive dopant-induced structural and energetic
disorder44. Compared with P(PzDPP-4F2T), P(PzDPP-2FT) shows a

-20 0 20 40 60 80 100

10-8

10-7

10-6

10-5

10-4

0

2

4

6

8

10

12

14

20 25 30 35 40 45 50
10-5

10-4

10-3

10-2

10-1

100

101

I D
S 

(A
)

VGS (V)

I D
S 

1/
2 (

10
-3

A1
/2
)

μe2FT = 1.30 cm2·V-1·s-1

a

VG (V)

μ
(c

m
2

V-
1

s-
1 )

Eu (meV)

μ
(c

m
2

V-
1

s-
1 )

0.5 1.0 1.5 2.0

102

103

104

105

E (eV)

Ab
so

rp
tio

n 
C

oe
ffi

ci
en

t (
cm

-1
)

0 10 20 30 40 50

40

60

80

100

Dopant/polymer Ratios (%)

E
A

(m
eV

)
C

on
du

ct
iv

ity
 (S

 c
m

-1
)

Year
2004 2008 2012 2016 2020

10-4

10-3

10-2

10-1

100

101

102

b c

d e f

-20 0 20 40 60 80 100

0.0

0.5

1.0

1.5

μe4F2T = 1.28 cm2·V-1·s-1

48.8 meV 36.6 meV

P(PzDPP-2FT)
P(PzDPP-4F2T)

P(PzDPP-2FT)
P(PzDPP-4F2T)

P(PzDPP-2FT)
P(PzDPP-4F2T)

P(PzDPP-2FT)
P(PzDPP-4F2T)

IDT
DPP
PBTTT
P3HT
MEH-PPV
PTAA
N2200
P(PzDPP-2FT)
P(PzDPP-4F2T)

C60
PCBM
NDI (PDI)
BDPPV
BDOPV
BBL
PTEG
DPP
IID

This Work

Fig. 4 Comparison of the charge-transport properties, Urbach energies, and activation energies. a Transfer characteristics of the pristine P(PzDPP-2FT)
and P(PzDPP-4F2T) films. b Gate-voltage-dependent saturation mobilities. c Extracted activation energies of the doped films at different dopant/polymer
ratios. d Absorption coefficients of both the pristine polymer films measured by PDS. Dash lines represent exponential tail fits for extraction of the Urbach
energies. e Mobility vs. Urbach energy of ours and other reported polymers. f Electrical conductivity comparison of reported n-doped semiconducting
polymers.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26043-y

6 NATURE COMMUNICATIONS |         (2021) 12:5723 | https://doi.org/10.1038/s41467-021-26043-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


smaller activation energy fluctuation with the change of the doping
concentration and the excessive dopants (>20%) did not obviously
increase the activation energy. These results suggest that P(PzDPP-
2FT) has a stronger tolerance to the dopant-induced energetic
disorder27,45. Therefore, the high miscibility with dopants and
disorder-tolerant feature of P(PzDPP-2FT) allows it to show high n-
type electrical conductivities (Fig. 4f).

P(PzDPP-T) has a coplanar and linear backbone with relatively
high torsional barriers but multiple coplanar conformations (i.e., at 0°
and 180°). It showed low electrical conductivity of 0.01 S cm−1 when
doped with TDAE or N-DMBI (Supplementary Fig. 34). The EPR
measurement indicated that the doped P(PzDPP-T) films had a
charge-carrier concentration of ca. 1019 cm−3, comparable to that of
P(PzDPP-2FT) and P(PzDPP-4F2T) (Supplementary Fig. 33 and
Supplementary Table 1). Therefore, the low electrical conductivity of
the doped P(PzDPP-T) film is primarily attributed to its low charge-
carrier mobility or significant structural and energetic disorder. This

result suggests that apart from a planar backbone, a single dominant
conformation is also important to realize the disorder-tolerant
feature.

Theoretical modeling. To further understand the difference
among the three polymers in molecular scale and the importance
of our design rules, we performed atomistic molecular dynamics
simulations (see Supplementary Information for more details).
Crystalline and disordered regions in polymer films are critical
for interchain and intrachain charge transport27. Figure 5a, b
show that both P(PzDPP-2FT) and P(PzDPP-4F2T) exhibit
narrower torsion-angle distributions and more planar backbone
in the crystalline region compared with P(PzDPP-T). This result
is consistent with the better planarity of the fluorine-substituted
polymers according to design Rule (1). Disorder regions may
become more critical in doped conjugated polymers, as previous
studies have shown that dopants tend to insert into the side chain

Fig. 5 Computational studies. a MD simulations of the polymers in crystalline and disorder regions. b Torsion-angle distributions for dihedral angles along
polymer backbone (φ1 ~ φ7). The torsion-angle distribution width (W) based on the Gaussian fitting could be considered as the SD from planarity. c
Calculated DOS distributions for dodecamers of both polymers. d, e δginter-isosurface and δginter-sign(λ2)ρ 2D fingerprint plots for illustrating the different
intermolecular interactions between d P(PzDPP-2FT)−-TDAE+ and e P(PzDPP-4F2T)−-TDAE+.
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or/and π–π stacking zones, perturbing the polymer packing and
cause large structural disorder46. We then expanded the π–π
stacking and lamellar distances of the polymers to simulate the
disorder regions or the dopant-induced disorder regions. Without
the restrain of tight π–π stacking, P(PzDPP-4F2T) shows
obviously broadened torsion-angle distributions and its backbone
severely deviates from planarity, whereas P(PzDPP-2FT) can still
maintain planar conformation, thanks to its high and steep tor-
sional barrier in each dihedral angle. The shape-persistent back-
bone and narrower torsion-angle distributions in P(PzDPP-2FT)
provide the polymer with good interchain interactions, as
demonstrated in the gelation experiment. As for P(PzDPP-T), it
not only displays the widest dihedral angle distribution due to its
low torsional potentials but also twists partly on account of its
non-unique preponderant conformation at 0° or 180°, further
emphasizing the importance of Rule (2) and Rule (3). To quantify
the degree of disorder, we calculated the DOSs via DFT and
compared the characteristic depth of the trap states (Eb) of the
two fluorinated polymers. In crystalline regions, both polymers
exhibit similar Eb of the DOS of LUMO energy level. When
turned to disorder regions, the Eb of P(PzDPP-2FT) increased
slightly from 18 to 23 meV, compared to P(PzDPP-4F2T) from
19 to 31 meV, outlining that the former owns a better disorder-
tolerant ability. Thus, charge carriers in P(PzDPP-2FT) can
transport more efficiently with less energetic disorder after
dopants are added47. Considering the large proportion of disorder
regions in polymer films, the intrachain charge transport in these
disorder regions may strongly affect the whole charge-transport
characteristics. All these results allow us to conclude that
P(PzDPP-2FT) undoubtedly has excellent transport properties
and superior disorder-tolerant ability.

We also performed DFT calculations to explore the intermole-
cular interactions between the polymers and the dopants. Using
TDAE as an example, we found that P(PzDPP-2FT) has a stronger
binding energy with TDAE+, because the cationic TDAE+ tends to
dock into the “cavity” formed by the zigzag backbone (Supplemen-
tary Fig. 44 and Supplementary Table 3). Independent Gradient
Model (IGM) analysis in Fig. 5d suggests that the major interactions
between TDAE+ and P(PzDPP-2FT)− are hydrogen bonding and
Van der Waals interactions, whereas only weaker Van der Waals
interactions are found for P(PzDPP-4F2T)−-TDAE+ fragment.
According to the IGM analysis, non-zero values of δginter exclusively
correspond to interaction situations: the larger the δginter value, the
stronger the interactions48. Therefore, larger δginter in the 2D
fingerprint plot of P(PzDPP-2FT)−-TDAE+ supports the stronger
intermolecular interaction and thus larger binding energy, compared
to that of P(PzDPP-4F2T)−-TDAE+ (Fig. 5d and Supplementary
Table 3). During the geometry-optimization process, we found that
TDAE+ was easily captured in the “cavity” formed by the zigzag
backbone of P(PzDPP-2FT), whereas it tended to stay on the top of
the P(PzDPP-4F2T) backbone. This could result in serious
disruption of the polymer packing in P(PzDPP-4F2T) or refraining
the TDAE from doping. These results indicate that the zigzag
backbone curvature can effectively capture TDAE dopants without
much destruction to polymer packing and lead to enhanced
miscibility and higher doping efficiency in P(PzDPP-2FT) films.

Discussion
In conclusion, with three design rules and a computer-aided

building block screening process, we have successfully designed and
synthesized a disorder-tolerant n-type polymer, P(PzDPP-2FT). Our
results indicate that a highly dopable and disorder-tolerant polymer
might need the following features: (i) high and steep torsion-angle
barriers to prevent any distortions caused by dopants; (ii) single

preferential planar conformation; (iii) strong interchain interactions
(as indicated by the gel formation experiment) that can endure
dopant interference and provide efficient interchain charge trans-
port; and (iv) strong dopant-binding sites that do not disturb
polymer packing. We envisage that our disorder-tolerant design
could provide a valuable strategy for highly dopable and highly
conductive conjugated polymers.
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